

FP7 Support Action - European Exascale Software Initiative

DG Information Society and the unit e-Infrastructures

Addressing the Challenge of Exascale

European Exascale Software Initiative EESI Towards Exascale roadmap implementation

EESI2 – Recommendations

Algorithms for Communication and Data-Movement Avoidance

Laura Grigori Inria/UPMC I. Duff, S. Filippone, H. Ltaief, U. Rude

Major obstacle: the communication wall

- Runtime of an algorithm is the sum of:
 - #flops x time_per_flop
 - #words_moved / bandwidth
 - #messages x latency
- Time to move data >> time per flop Gap steadily and exponentially growing over time

Annual improvements						
Time/flop		Bandwidth	Latency			
59%	Network	26%	15%			
	DRAM	23%	<mark>5%</mark>			

"We are going to hit the memory wall, unless something basic changes" [W. Wulf, S. McKee, 95]

Previous work on reducing communication

- Hiding
 - Overlap communication and computation, at most a factor of 2 speedup
- Ghosting
 - Store redundantly data from neighboring processors for future computations
- Scheduling
 - Block algorithms for linear algebra
 - Barron and Swinnerton-Dyer, 1960
 - ScaLAPACK, Blackford et al 97

Unlock the exa-scalability potential of numerical algorithms by integrating the communication dimension into the numerical algorithmic design

- Design communication avoiding algorithms for linear algebra and beyond
 - For all critical stages of computationally intensive applications, e.g. mesh generation algorithms, parallel in time methods.
- Focus on operations that are at the intersection with the data mining community
- Enable the development of sustainable software that implements this new generation of communication avoiding numerical algorithms
- Enable leadership of European researchers in selected areas
 - e.g. CA algorithms, H-matrices, Fast Multipole Methods
- Enable the coordination and federation of multiple efforts to reach a critical mass.

Example: CA for Linear Algebra

Communication avoiding algorithms - a novel perspective for numerical linear algebra

- Asymptotically reduce communication
- Minimize volume of communication / number of messages
- Allow redundant computations (preferably as a low order term)

Previous results: matrix multiply, using 2n³ flops (bandwidth)

Hong/Kung (1981), Irony/Tishkin/Toledo (2004)

Lower bounds for LU and QR factorizations

 For bandwidth and latency [Demmel, LG, Hoemmen, Langou 2008, SISC]

#words_moved $\geq \Omega(n^2 / P^{1/2})$ #messages $\geq \Omega(P^{1/2})$

Extended to almost all direct dense linear algebra [Demmel et al, 2009]

Example: CA for Linear Algebra

Algorithm	Minimizing	Minimizing		
	#words (not #messages)	#words and #messages		
Cholesky	ScaLAPACK	ScaLAPACK		
LU	ScaLAPACK uses partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting		
QR	ScaLAPACK	[Demmel, LG, Hoemmen, Langou, 08] uses different representation of Q		
RRQR	ScaLAPACK	[Demmel, LG, Gu, Xiang 13] uses tournament pivoting, 3x flops		

- LAPACK and ScaLAPACK sub-optimal
- ⇒ Communication avoiding algorithms are optimal for dense LA
- As stable as classic algorithms
- CAQR, CALU, RRQR considered/implemented by MKL- Intel, Cray, IBM

Parallel TSQR

Performance of TSQR and CAQR

Cray XE6, 2 12-core AMD Magny-Cours (2.1 GHz)

Challenge in getting scalable solvers

A Krylov solver finds a solution x_k from $x_0 + K_k$ (A, r_0), where K_k (A, r_0) = span { r_0 , $A r_0$, ..., $A^{k-1} r_0$ }

Each iteration requires Sparse matrix vector product -> point to point communication

> Dot products for the orthogonalization process -> global synchronization

Our goal:

- Decrease the number of iterations to Re decrease the number of global communications
- Increase arithmetic intensity

Enlarged Krylov subspace solvers

- Partition the matrix into t domains
- At k-th iteration,
 - □ split the residual r_{k-1} into t vectors corresponding to the t domains,

$$r_{k-1} \rightarrow T(r_{k-1}) = \begin{bmatrix} * & 0 & & 0 \\ \vdots & \vdots & & \vdots \\ * & 0 & & 0 \\ 0 & * & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & * & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & * & \\ \vdots & \vdots & & \vdots \\ 0 & 0 & * & \\ \vdots & \vdots & & \vdots \\ 0 & 0 & * & \\ \vdots & \vdots & & \vdots \\ 0 & 0 & * & \\ \vdots & \vdots & & \vdots \\ 0 & 0 & * & \\ \end{bmatrix}, T_s(r_{k-1}) = \{T(r_{k-1})(\vdots, 1), \dots, T(r_{k-1})(\vdots, t)\}$$

□ generate *t* new basis vectors, obtain an enlarged Krylov subspace

$$\mathscr{K}_{t,k}(A, r_0) = span\{T_s(r_0), AT_s(r_0), A^2T_s(r_0), ..., A^{k-1}T_s(r_0)\}$$

□ search for the solution of the system Ax = b in $\mathscr{K}_{t,k}(A, r_0)$

Enlarged Krylov subspace methods

NLAFET H2020-FETHPC-2014 Umea University, Inria, University of Manchester, STFC/RAL

New generation of linear algebra algorithms and software libraries:

- Algorithms: minimize communication, reduce energy consumption, resilience
- Management of parallelism
- Auto-tuning

	CG		SRE-CG			
Pa	lter	Err	lter	Err		
SKY3D						
8	902	1E-5	211	1E-5		
16	902	1E-5	119	9E-6		
32	902	1E-5	43	4E-6		
ANI3D						
2	4187	4e-5	875	7e-5		
4	4146	4e-5	673	8e-5		
8	4146	4e-5	449	1e-4		
16	4146	4e-5	253	2e-4		
32	4146	4e-5	148	2e-4		
64	4146	4e-5	92	1e-4		
ELAST3D						
2	1098	1e-7	652	1e-7		
4	1098	1e-7	445	1e-7		
8	1098	1e-7	321	8e-8		
16	1098	1e-7	238	4e-8		
32	1098	1e-7	168	5e-8		
64	1098	1e-7	116	1e-8		