

Industrial expectations towards Exascale – ENI

EESI2 meeting Dublin 29th May 2015 by K. L. Nielsen and N. Bienati

eni.com

Computing

Computing in Oil & Gas Industry

Actual status of HPC in eni: Green Data Center

- Characteristics
 - Nr 12 on top 500 (Nov.-2014)
 - 72000 cores (CPUs+GPUs)
 - 3188 TFLOP/S sustained

2. High performance computing room

- Please see:
 - http://www.eni.com/green-data-center/it IT/pages/home.shtml

HPC and Oil & Gas Industry – evolution

- Traditional
 - Geoscience
 - Reservoir simulation
- Currently extended to
 - Multiphase flow
 - Flow assurance
- Coming
 - System Engineering
- Focus on solving:
 - HSEQ Health, Safety,
 Environmental and Quality
 - Economics
 - Time, schedule and planning

related HPC and DATA aspects

- Inverse problems
- Diffusive fluid transport
- Navier-Stokes
- Heat and mass transfer
- Stiff problems
- Multiscale physics
- Many Task Computing
- Multiphysics
- ODE's and DAE's
- Data processing
- Scenario analysis
- Extract data for decision making

System engineering

Example of system engineering in Oil & Gas Industry

Example of industry context: System-Engineering in oil and gas

Steps:

- Find the field
 - HPC in Geoscience
- Model the reservoir
 - HPC in reservoir modelling
- Design and build production facilities
 - HPC in multiphase flow and systems engineering
- An example of subsea layout:

Let us focus on the system...

A FPSO (Floating Production Storage and Offloading unit)

A 3D view of the FPSO – a complex system

Subsea System Engineering and Field Architecture

Develop efficient, safe, reliable and cost effective solutions

Systems - Level of detail - example 1 with limited dataset

A tank with inlet and outlet

- Assessment of liquid level
 - Level may be calculated from tank geometry and volume of liquid

A tank with inlet, outlet and level detection

- Model assessment...
 - Level measurement depend on sensor, electricity, connectors and cables etc...

Systems - Level of detail - example 3 with extensive dataset

- A tank with...
- Depends on other components
 - Electrical system
 - Diesel power generator
 - Control system
 - Hydraulics
 - Compressed air actuators
 - Fire fighting equipment
 - · ...
- Constraints are
 - Weight limits on structure
 - Space limits
 - ...

Bifurcations, constraints and multi-physics

The problem is to remain within boundaries of given constraints

- Relevant for control systems design
 - Sensor ranges
 - Feedback loops and control parameters

Example

- Multiphase pipe-flow in pipeline/riser
 - For particular valve settings...
 - ...outflow unstable at FPSO (the ship)

Other challenges

- Sampling of scenarios
 - Monte-Carlo techniques
 - Uncertainty and resilience
 - Planning assessment

Systems and exascale

• In conclusion: Map from system engineering to exascale computing

From systems-engineering to exascale computing

Systems engineering is a design process which mathematically is:

- Linking of components => Graph theory
 - Normally it is a NP-complete graph problem; implications?
- There is only one way to know if a design is valid:
 - 1) Assemble the graph
 - 2) Run the calculus
 - 3) Check all constraints (the devil-in-the-detail hides in this step)

Challenges will become larger and more complex...

- Numerical methods:
 - Parallel-in-time, ODE's & DAE's bifurcation assessment, constraint and answer set programming
 - Sparse systems, inverse systems, meshing, statistical methods, etc.
- Data:
 - Handling of datasets evolving and growing in-time
 - Data-system resilience and consistency
- Development of multi-physics or multi-domain simulations

Oil & Gas Industry – vision on EESI and Exascale Applications

Actions must be taken in order to...

- Develop Programming Capabilities
 - A challenge to legacy-SW when moving towards Exascale HW
 - New software developments are necessary for Exascale HW
- Scalable & verifiable & maintenable Software, Algorithms and Data Handling
 - R&D in software design distributed and asynchronous module interaction, debugging & profiling are NOT trivial tasks
 - R&D in numerical methods, e.g. for parallel time integration
 - R&D in analysis of distributed data-sets

Actions must be coordinated, henceforth:

Recommendations from EESI2 are exactly expressing industry needs.

QUESTIONS?

