

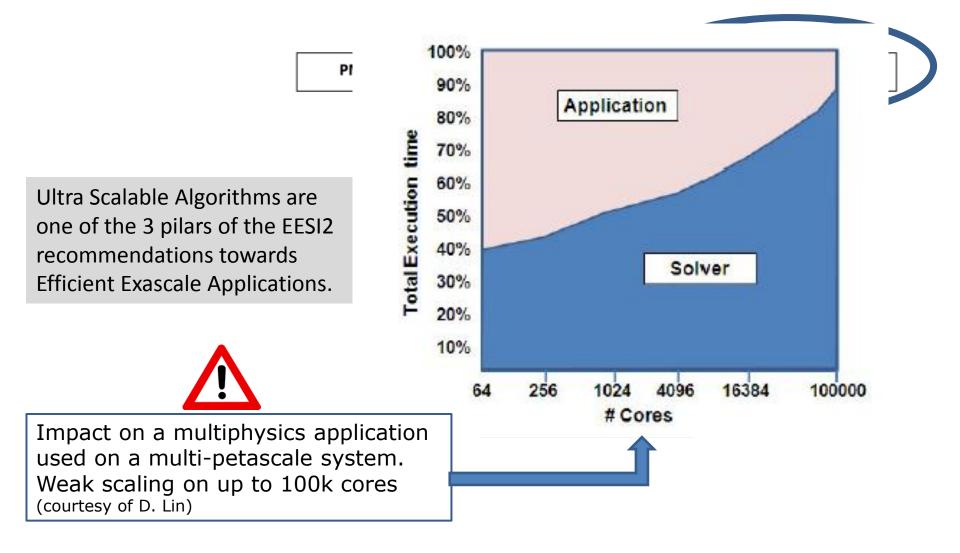
FP7 Support Action - European Exascale Software Initiative

DG Information Society and the unit e-Infrastructures

Addressing the Challenge of Exascale

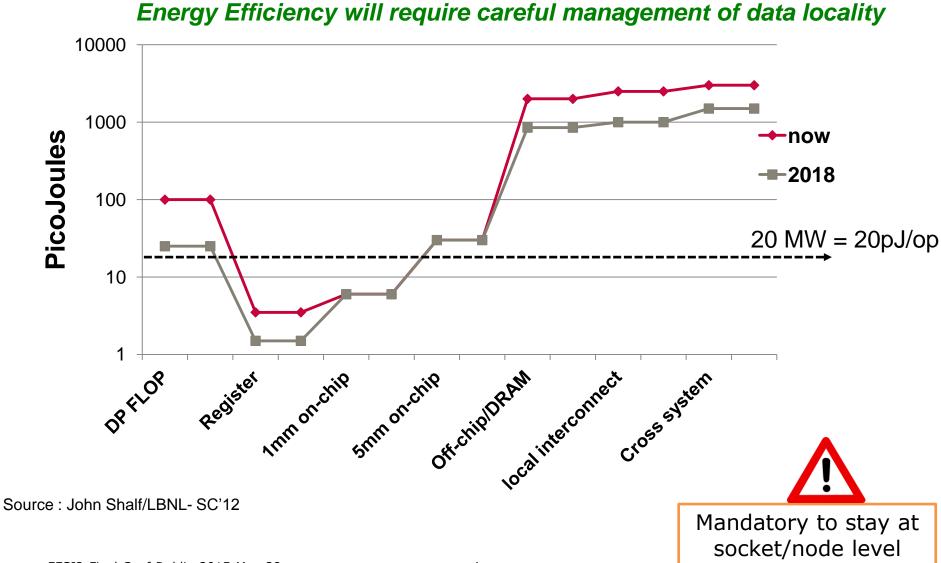
European Exascale Software Initiative EESI Towards Exascale roadmap implementation

EESI2 – Recommendations


Ultra Scalable Algorithms

S. Requena - WP3 leader

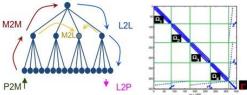
EESI2 recommendations


The Exascale Constraints

Systems	2012 -> 2015	2015 -> 2017	2018 -> 2022	Difference 2012 & 2018
System Peak [PF/s]	25	200	1000	O(50)
Power [MW]	6-20	15-50	20-80	O(5)
System Memory [PB]	0.3-0.5	5	32-64	O(100)
GB RAM/Core	0.5-2	0.2-1	0.1-0.5	5 times less
Node Performance [GF/s]	160-1000	500-7000	1000-10000	0(10)
Cores/Node	16-32	100-1000	1000-10000	O(50)-O(500)
Node memory BW [GB/s]	70	100-1000	400-4000	0(5) - 0(50)
Number of nodes	10.000- 100.000	5000- 50.000	100.000- 1.000.000	0(10)
Total concurrency	O(10 ⁶)	O(10 ⁷)	O(10 ⁹)	O(1000)
MTTI	days	O(1 day)	O(1 day)	10 times less

Source: Rick Stevens and Andy White, IESP Meeting, Oxford 2010

Ultra Scalable Algorithms - Motivations



« Algorithms for Communication and Data-Movement Avoidance »

Rationale : <u>Optimizing data placement and movement</u> will be key to performance, as well as a primary way for solvers to <u>reduce power consumption</u>.

Goals of the recommandation :

- Design next gen of dense & sparse hybrid solvers
 - focused on communication reduction/avoiding,
 - use of hierarchical methods (H-Matrices, Fast Multipole Methods, …)
 - efficient paralleliation using directed acyclic graphs (DAG) and smart rutime over heterogeneous manycore nodes
- Focus on operations that are at the intersection with the data mining community (low rank approximation of large matrix)
- Enable leadership of European researchers in selected areas and allow to reach critical mass

EESI2-Final-Conf-Dublin-2015-May-28

The Exascale Constraints (again)

Systems	2012 -> 2015	2015 -> 2017	2018 -> 2022	Difference 2012 & 2018
System Peak [PF/s]	25	200	1000	O(50)
Power [MW]	6-20	15-50	20-80	O(5)
System Memory [PB]	0.3-0.5	5	32-64	O(100)
GB RAM/Core	0.5-2	0.2-1	0.1-0.5	5 times less
Node Performance [GF/s]	160-1000	500-7000	1000-10000	O(10)
Cores/Node	16-32	100-1000	1000-10000	O(50)-O(500)
Node memory BW [GB/s]	70	100-1000	400-4000	O(5) – O(50)
Number of nodes	10.000- 100.000	5000- 50.000	100.000- 1.000.000	O(10)
Total concurrency	O(10 ⁶)	O(10 ⁷)	O(10 ⁹)	O(1000)
MTTI	days	O(1 day)	O(1 day)	10 times less

Source: Rick Stevens and Andy White, IESP Meeting, Oxford 2010

« Parallel-in-Time: a fundamental step forward in Exascale Simulations »

Rationale

- Spatial decomposition strategies are not enough for exploiting all the massive amount of concurrency of Exascale systems
 - Use of the parallelision accros the time dimension
 - Potential application areas include: climate research, CFD, life sciences, materials science, nuclear engineering, etc
 - European researchers are leading Parallel-in-Time developments

Goals

- Establish of multi-disciplinary consortia to co design the deployment of Parallel-in-Time methods, encapsulated in reusable scalable libraries
- Establish a series of benchmarks for Pro/Cons of Parallel-in-Time methods
- Fund 2 to 4 internatonal projects between €2M and €4M

EESI2-Final-Conf-Dublin-2015-May-28

After the apetizer, lets go for the main course

- « Algorithms for Communication and data-movement Avoidance » by L. Grigori (Inria, France)
- *« Parallelisation in Time with examples on applications »* by M. Bolten (Univ. of Wuppertal, Germany)
- « User presentation on Exascale Communication hiding/avoiding with examples on applications » by W. Vanroose (Univ. of Antwerp, Belgium)

8