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EESI2 recommendations 

Motivation 
This approach is really disruptive by Changing the classical  
sequential paradigm which is: First Simulation ,Then “Off 
Line” post processing, Visualization and then feedback to 
new Simulations. This paradigm imposes to move data in 
memories and in storage. 
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This recommendation is fully in the core of 
Exascale development,  in the Data Centric 
Pillar, for the best  compromise between 
Extreme Computing and Extreme Data . 

New large simulations (Turbulence, Combustion, Oil & Gas Reservoir, Neutronics, 
Electromagnetism , Astrophysics, …) generate huge amount of simulated data 

Combustion Turbulent :  1PB each 30 min 
Giga Model Reservoir:   350 TB/Run  

         Analysis, Reduction and Visualization on the Fly , In situ Data Processing 

 New Paradigm: In Parallel Compute and Analyse 

Impossible to move and store  

 Data Centric Approaches 



Typical Reservoir simulations  

3 

57.7 GB IPARS (simulator) dataset distributed 

N > 15 Millions  
NNZ ≈10 Billions  

 

Generation of 
350 TB / Run 

New Numerical 
Schema 

HPC allows to improve physical 
models increasing accuracy and 

knowledge  
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Exascale Combustion Turbulent 

 Predict behavior of new fuels in 
different combustion scenarios at 
realistic pressure and turbulence 
conditions 

 Develop new combustor concepts 

 Design new fuels 

 Co-design center is focusing on high-
fidelity direct numerical simulation 
methodologies 

 Need to perform simulations with 
sufficient chemical fidelity to 
differentiate effects of fuels where 
there is strong coupling with 
turbulence  

 Need to address uncertainties in 
thermo-chemical properties 

 

DNS of Autoigniting Jet Flames  

• 3D turbulence coupled with Chemistry 
(>100 species) 

• Fundamental insights into stabilizing a 
lifted flame in hot ignitive environment 

 

Full DNS with coupling all 
physics and chemistry 
generates PB of data 
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time 

… 

synchronous 

time 

… 

asynchronous 

shared cores 

dedicated cores 
on same node 

dedicated separate nodes 

network communication 

simulation analysis 

Exploring the design space of new workflows 
 

 

 Location of analysis compute resources 
 Same cores as the simulation (in-situ) 

 Dedicated cores on the same node (in-situ) 

 Dedicated nodes on the same machine (in-transit) 

 Dedicated nodes on external resource (in-transit) 

 Data access, placement, and persistence 
 Shared memory access via hand-off / copy 

 Shared memory access via non-volatile near node 
storage (NVRAM) 

 Data transfer to dedicated nodes or external 
resources 

 Synchronization and scheduling 
 Execute synchronously with simulation                   

every nth simulation time step 

 Execute asynchronously  

D
R

A
M

 

       hand-off/copy 

N
V

R
A

M
 

       non-volatile 

network communication 

DRAM DRAM 

data transfer to dedicated nodes 
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simulation analysis 

Exploring the design space of workflows: 
In-situ workflow performed synchronously with simulation 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

simulation time step 1 
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simulation analysis 

  
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

in-situ analysis time step 1 

Exploring the design space of workflows: 
In-situ workflow performed synchronously with simulation 
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simulation analysis 

  
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

simulation time step 2 

Exploring the design space of workflows: 
In-situ workflow performed synchronously with simulation 
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simulation analysis 

  
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

in-situ analysis time step 2 

Exploring the design space of workflows: 
In-situ workflow performed synchronously with simulation 
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simulation analysis 

  
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

• Works well for data-parallel analyses with short run times 
• For more complex analyses, impact to the simulation 

becomes too great 

Exploring the design space of workflows: 
In-situ workflow performed synchronously with simulation 
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simulation analysis task scheduler 

                 shared system 
 

primary resources 
secondary compute resources 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

in-transit staging 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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simulation analysis task scheduler 

                 shared system 
 

primary resources 
secondary compute resources 

primary compute resources 
…

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

simulation time step 1 

in-transit staging 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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simulation analysis task scheduler 

                 shared system 

 primary resources 
secondary compute resources 

primary compute resources 
…

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

in-situ analysis time step 1 

in-transit staging 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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simulation analysis task scheduler 

                 shared system 
 

primary resources 
secondary compute resources 

primary compute resources 
…

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

in-situ analysis time step 1 

in-transit staging 
data ready 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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simulation analysis task scheduler 

                 shared system 
 

primary resources 
secondary compute resources 

primary compute resources 
…

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

in-situ analysis time step 1 

in-transit staging 
data ready 

task & data  descriptors 
added to work queue 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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simulation analysis task scheduler 

                 shared system 
 

primary resources 
secondary compute resources 

primary compute resources 
…

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

in-situ analysis time step 1 & 
simulation time step 2 

asynchronous 
data transfers 

in-transit staging 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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simulation analysis task scheduler 

                 shared system 
 

primary resources 
secondary compute resources 

primary compute resources 
…

 

…
 

…
 

1 …
 

…
 

…
 

…
 

…
 

primary compute resources 

…
 

…
 

…
 

…
 

…
 

simulation time step 2 

in-transit staging 

Exploring the design space of workflows: 
Temporally multiplexed hybrid in-situ + in-transit workflow 
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Hybrid workflow design impacts the manner in which  
analysis is performed  

In-situ In-transit 

Data-parallel More forgiving of complex 
communication needs 

Short run time with respect to 
simulation 

Can have longer run times while 
minimizing impact to simulation 

Limited amount of memory;  
minimize cache impacts 

Limited to memory and processing 
constraints of secondary resources 

Should minimize the amount of data 
sent in-transit 

Can only require data sent by in-situ 
stage 

Hybrid analysis requires decomposition of algorithms into 2 stages 
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In situ techniques and methods 

19 

Data Reduction 
The transform by itself should be reversible 
 Subsample, Single precision or double precision,  
 Quantization  Direct scalar quantization,, Adaptive scalar quantization,, Vector quantization 

(VQ) or block quantization groups  (LBG, k means, Codebook training)  (VQ is computationally 
expensive as an in-situ processing method)  

 Transform-based compression (FT, wavelet, … ) 
 
 
 
 
 
 
 
 
 
 

 
 

Feature Extraction 
Large-scale scientific simulations generate massive 
amounts of data that must be validated and analyzed 
for understanding and possibly new discovery.  
 Basic visualization algorithms exist for feature identification, extraction, and tracking, which 

incorporate principles from image processing, computer vision, and machine learning (especially 
new deep learning).  

Quality Assessment  
If data has to be reduced, the corresponding information loss must be conveyed to the user of the 
reduced data set. Quality assessment thus plays a crucial role in large-scale data analysis and 
visualization since in many cases the reduced versions of data rather than the original version are used 
for evaluating the simulation and modeled phenomena. 

Issues  In Situ Visualization 
Compared with a traditional visualization task that is performed in a postprocessing fashion, in-situ 
visualization brings some unique challenges. 
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Efficient In situ Data Processing: Coupling 3 Algorithms with 
different characteristics   

Topology 

• Complexity: very data dependent 
• Communication: very data dependent 

Volume Rendering 

• Complexity: data dependent 

• Communication: data dependent 

Statistics 

• Complexity: not data dependent 
• Communication: small, fixed 

Statistics  

 Debugging and Analysis, Filtering and 
averaging (spatial and temporal) 

 Statistical moments (conditional) 
 In-situ local moments & aggregation 

 In-situ local moments + in-transit 
aggregation 

 Statistical dimensionality reduction  

 Spectra (scalar, velocity, coherency) 

Topological Segmentation and 
Tracking 

Distance field (level set) 

Compute local merge trees 

 Integrate to resolve features 
spanning multiple cores 

Adjust local merge trees 
 
 

 

Volume Rendering 

Qualitative visual 
depiction of data 

Local data: partial images 
via image compositing 

In-situ down-sampling + 
in-transit rendering & 
compositing 

 

 

In Situ Uncertainty Quantification Guided by Analytics 
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In-situ Visualization  

Parallel volume rendering  
 Design grid adaptor mechanism 

 Visualization directly takes data regions from grid 

adaptor 

 Highly scalable parallel volume rendering, particle 

rendering and image compositing 

 Down sampling 

 
 

full resolution down sampled

Reduced topology computation 
 Complete characterization of 

level-set behavior of 
simulation variables 

 Used to define features of 
interest 

 Compute local merge trees 
 Integrate to resolve features 

spanning multiple cores 
 Adjust local merge trees 
 

 
Digital Rocks Properties EESI2-Final-Conf-Dublin-2015-May-28 21 



On the fly Visualization 

 

 

 

 

 

 

  

 

 

 

In-situ Visualization 

 

In-Situ Visualization :        Collaboration between simulation and visualization 

On the fly Visualization :  Accessing to In-situ Visualization at “simulation time” 

On the fly  

User 

• LEVEL 1 
• User wants to see ! 
• Is the simulation 

converging? 
• Monitoring 
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On the fly Visualization 

 

 

 

 

 

 

  

 

 

 

In-situ Visualization 

 

In-Situ Visualization :        Collaboration between simulation and visualization 

On the fly Visualization :  Accessing to In-situ Visualization at “simulation time” 

On the fly  

User 

• LEVEL 2 
• User wants to 

change the 
visualization 

• Change an initial 
choice? 

• Modify the pipeline 
at “simulation time” 
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On the fly Visualization 

 

 

 

 

 

 

  

 

 

 

In-situ Visualization 

 

In-Situ Visualization :        Collaboration between simulation and visualization 

On the fly Visualization :  Accessing to In-situ Visualization at “simulation time” 

On the fly  

User 

• LEVEL 3 
• User wants to DRIVE! 
• Computational steering 
• Real time response 

 

Karman Vortex Street 
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S3D	 in-situ	 data	movement	 in-transit		

Simulation case study with S3D (CT):  Timing results for 4896 
cores and analysis every 10th simulation time step 

1.0%  

1.0% 

.43% 

.004% 

1.61% 

Courtesy of Jackie Chen, EXaCT, Sandia  

Local trees can be integrated in a N to 1 communication pattern

Compute
local tree

Adjust
local tree

Compute
local tree

Adjust
local tree

Integration Integration

… …

Integration

…
Integration

…

Integration

…

…

…
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Toward real time Extreme Data Processing and better science through 

I/O avoidance in High-Performance Computing systems 
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 Data Centric Approaches 
Proposal : Fund R&D programs in order to explore 

 The design space of future workflows: Real Time (In situ) data-related 
energy/performance trade-offs for end-to-end simulation workflows running at scale on 
current high-end computing systems  

 Take into account future multi tiered storage architectures and asynchronous data 
transfers  

 Design and implement new analysis techniques typically performed on large-scale 
scientific simulations: topological analysis, descriptive statistics, surrogate data model, 
filtering, compression, active learning, pattern/feature discovery, error analysis …  

Identify metrics required to characterize classes of analyses 
Identify which classes of algorithms perform best under which workflow designs 
Algorithmic shifts – subsampling with quantification of error 

 Explore disruptive approaches like sub-linear algorithms addressing the fundamental 
mathematical problem of understanding global features of a data set using limited 
resources.  

 The use of in situ data analysis for tracking and checking fault or error propagation into 
the simulation, associating a resilience aspect with the execution of workflows on parallel 
systems. 
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Some Biblio on In situ Data Processing & Extreme Computing 
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 In situ data processing for extreme-scale computing 
  Scott Klasky1, All ORNL,  LBNL, Sandia, …, 2013 

 Combining In-situ and In-transit Processing to Enable Extreme-Scale Scientific Analysis 
 Janine C. Bennett, Hasan Abbasiy, Peer-Timo Bremer, … Sandia, LBNL, …, Nov 2012 

 Parallel In Situ Indexing for Data-intensive Computing 
 Jinoh Kim, Hasan Abbasi, Luis Chac´on Ciprian Docan, LBNL, ORNL, 2013 

 Parallel In Situ Coupling of Simulation with a Fully Featured Visualization System 
 Brad Whitlock, Jean M. Favre, Jeremy S. Meredith, LLNL, Swiss National Supercomputing Center (CSCS), ORNL, 2011 

 Enabling Real-time In-Situ Processing of Ubiquitous Mobile-Application Workflows 
 Hariharasudhan Viswanathan, Eun Kyung Lee, and Dario Pompili, NSF, Rutgers University, New Brunswick, NJ, 2013 

● Fast Multiresolution Reads of Massive Simulation Datasets 
 Sidharth Kumar, Cameron Christensen1, John A. Schmidt, Peer-Timo Bremer, Eric Brugger, Venkatram Vishwanath, Philip 

Carns, Hemanth Kolla,, Ray Grout, Jacqueline Chen, Martin Berzins, University of Utah, LBNL, Sandia, … ,2014 

● Multivariate Volume Visualization through Dynamic Projections 
 Shusen Liu, Jayaraman J. Thiagarajan , Peer-Timo Bremer, Valerio Pascucci , Utah, LBNL, 2014 

 Gaussian Mixture Model Based Volume Visualization 
  Shusen Liu , Joshua A. Levine , Peer-Timo Bremer, Valerio Pascucci , Utah, LBNL, Nov. 2012 

 Sublinear Algorithms for In-situ & In-transit Data Analysis at Exascale 
 Janine Bennet, Seshadhri Comandur, Ali Pinar, David Thompson, Sandia, 2013 -2104 

 In-Situ Processing and Visualization for Ultrascale Simulations 
 Kwan-Liu Ma, Chaoli Wang, Hongfeng Yu, Anna Tikhonova, Department of Computer Science, University of California , 2014 

 In-situ Visualization: State-of-the-art and Some Use Cases 
 Marzia Rivia, Luigi Caloria, Giuseppa Muscianisia, Vladimir Slavnicb, CINECA, University of Belgrade,  2013 
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